Fractional Laplacian on the torus

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of fractional charge solutions on the torus

We study by numerical methods a particular kind of SU(N) Yang-Mills solutions of the Euclidean equations of motion which appear on the torus when twisted boundary conditions are imposed. These are instanton-like configurations with the peculiarity of having fractional topological charge. We focus on those solutions with minimal non-trivial action S = 8π/N and extract their properties in a few d...

متن کامل

Modular Invariance on the Torus and Fractional Quantum Hall Effect

The implementation of modular invariance on the torus at the quantum level is discussed in a group-theoretical framework. Two cases must be considered, depending on the cohomology class of the symplectic form on the torus. If it is of integer cohomology class n, then full modular invariance is achieved at the quantum level only for those wave functions on the torus which are periodic if n is ev...

متن کامل

The Extremal Solution for the Fractional Laplacian

We study the extremal solution for the problem (−∆)u = λf(u) in Ω, u ≡ 0 in R \ Ω, where λ > 0 is a parameter and s ∈ (0, 1). We extend some well known results for the extremal solution when the operator is the Laplacian to this nonlocal case. For general convex nonlinearities we prove that the extremal solution is bounded in dimensions n < 4s. We also show that, for exponential and power-like ...

متن کامل

The Pohozaev Identity for the Fractional Laplacian

In this paper we prove the Pohozaev identity for the semilinear Dirichlet problem (−∆)u = f(u) in Ω, u ≡ 0 in R\Ω. Here, s ∈ (0, 1), (−∆) is the fractional Laplacian in R, and Ω is a bounded C domain. To establish the identity we use, among other things, that if u is a bounded solution then u/δ|Ω is C up to the boundary ∂Ω, where δ(x) = dist(x, ∂Ω). In the fractional Pohozaev identity, the func...

متن کامل

On a connection between the discrete fractional Laplacian and superdiffusion

We relate the fractional powers of the discrete Laplacian with a standard time-fractional derivative in the sense of Liouville by encoding the iterative nature of the discrete operator through a time-fractional memory term.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Contemporary Mathematics

سال: 2016

ISSN: 0219-1997,1793-6683

DOI: 10.1142/s0219199715500339